- > When greyscale diffeos fail, why is it?
 - > Too far to go
 - Poor initialization
 - Local minima in appearance (image match)
 - > Topology in two scenes do not match
 - Mostly between patients or atlas and patient
 - Qualitatively different topology, e.g.:
 - cortical folding
 - Branching patterns
 - Sliding
 - Regularization leads to poor correspondence
 - Including landmark match helps only partially
 - Intensity differences between the two images
 - Solution: objects match with correspondence
- > Object-based Correspondence-Maintaining Unfolded Transformations (Rohit Saboo)
 - > Produce dense correspondence on each reference object in target image
 - Initialization using m-rep fitting
 - > Diffusion from m-rep-implied boundary to input boundary
 - Oguz entropy-optimization, using curvatures
 - > New version with one object as input, after training summary
 - Designate sliding surfaces, if any
 - Compute correspondence-maintaining unfolded warp
 - In target image
 - Initialize conductances to 1
 - Give box of image edge its coords as 3 temperatures

- > Give ref. objects their coords in atlas as 3 temperatures
- > Initialize all other voxels' temperatures as its coords
- Iterate:
 - Solve Laplacian steady-state heat-flow
 - Map to atlas image via its x,y,z vs. result's T₁, T₂, T₃
 - Identify folding regions and compute conductances
- > When entropy-based correspondence fails, why is it?
 - Poor features
 - > x, y, z not characteristic of correspondence
 - Higher order geometry can be useful
 - Normal directions
 - Curvature
 - Connections via rigid transformations of wholes or parts: based on normals
 - All require a smooth boundary
 - Produces a better segmentation than slice contours or voxel faces
 - Producing smooth boundary from (not necessarily equally spaced) contours: Rohit Saboo anti-aliasing method